The Attentional Bias Toward Images of Climate Change and Its Impact on Citizen Commitment

Authors

DOI:

https://doi.org/10.5294/pacla.2024.27.4.5

Keywords:

Attention, climate change, images, environment, perception

Abstract

Visual communication may influence public perception of the climate crisis. This study examines how attentional bias toward climate change-related images is associated with pro-environmental attitudes. A self-report approach was employed with 312 university students exposed to negative, positive, and neutral pieces, finding that their emotional valence plays a crucial role in shaping risk perception. Images highlighting environmental and economic losses tend to attract attention; however, they can also discourage deeper reflection on individual contributions to the issue. In contrast, positive images encourage people to think critically and propose solutions. The study shows that the public’s ability to visualize short-term goals and successes leads to a greater willingness to support environmental initiatives. These findings provide evidence on the images that should be used to promote citizen commitment to combat climate change. It is not advisable to transmit disturbing or fear-inducing images, as they may trigger defensive psychological responses and deter audiences from engaging with environmental issues.

Downloads

Download data is not yet available.

References

Alexa (2023). The top 500 sites on the web. https://www.alexa.com/topsites

American Psychiatric Association (2013). Diagnostic and statistical manual of mental disorders. https://doi.org/10.1176/appi.books.9780890425596

Anwar, R. (2023). The emotional and behavioral effects of youth exposure to images of the global climate change crisis and its relationship to their personal characteristics Quasi-experimental study. Journal of Mass Communication Research, 68(1), 3-110. https://doi.org/10.21608/jsb.2023.323785

Bendall, R., Begley, S. y Thompson, C. (2021). Interactive influences of emotion and extraversion on visual attention. Brain and Behavior, 11, e2387. https://doi.org/10.1002/brb3.2387

Bord, R., Fisher, A. y O’Connor, R. (1998). Public perceptions of global warming: United States and international perspectives. Climate Research, 11, 75-84. https://doi.org/10.3354/cr011075

Bradley, M., Sabatinelli, D., Lang, P., Fitzsimmons, J., King, W. y Desai, P. (2003). Activation of the visual cortex in motivated attention. Behavioral Neuroscience, 117(2), 369-380. https://doi.org/10.1037/0735-7044.117.2.369

Carlson, J., Kaull, H., Steinhauer, M., Zigarac, A. y Cammarata, J. (2020). Paying attention to climate change: Positive images of climate change solutions capture attention. Journal of Environmental Psychology, 71, 101477. https://doi.org/10.1016/j.jenvp.2020.101477

Chapman, D., Corner, A., Webster, R. y Markowitz, E. (2016). Climate visuals: A mixed methods investigation of public perceptions of climate images in three countries. Global Environmental Change, 41, 172-182. https://doi.org/10.1016/j.gloenvcha.2016.10.003

Cook, J. y Lewandowsky, S. (2016). Rational irrationality: Modeling climate change belief polarization using bayesian networks. Topics in Cognitive Science, 8, 160-179. https://doi.org/10.1111/tops.12186

Desnoyers, L. (2011). Toward a taxonomy of visuals in science communication. Technical Communication, 58(2), 119-134.

Dixon, G., McKeever, B., Holton, A., Clarke, C. y Eosco, G. (2015). The power of a picture: overcoming scientific misinformation by communicating weight-of-evidence information with visual exemplars. Journal of Communication, 65(4), 639-659. https://doi.org/10.1111/jcom.12159

Doyle, J. (2007). Picturing the clima(c)tic: Greenpeace and the representational politics of climate change communication. Science as Culture, 16(2), 129-150. https://doi.org/10.1080/09505430701368938

Duan, R., Takahashi, B. y Zwickle, A. (2021). How effective are concrete and abstract climate change images? The moderating role of construal level in climate change visual communication. Science Communication, 43(3), 358-387. https://doi.org/10.1177/10755470211008192

Erviti, M. C. (2013). Las imágenes del cambio climático en los informativos de televisión. Análisis de seis televisiones españolas de cobertura nacional. [Tesis doctoral, Universidad de Navarra]. http://dadun.unav.edu/handle/10171/39019

Fox, E., Mathews, A., Calder, A. y Yiend, J. (2007). Anxiety and sensitivity to gaze direction in emotionally expressive faces. Emotion, 7(3), 478-486. https://doi.org/10.1037/1528-3542.7.3.478

Fredrickson, B. y Branigan, C. (2005). Positive emotions broaden the scope of attention and thought-action repertoires. Cognition & emotion, 19(3), 313-332. https://doi.org/10.1080/02699930441000238

Fredrickson, B. y Branigan, C. (2001). Positive emotions. En Mayne, T. y Bonnano, G. (eds.), Emotion: Current issues and future directions (pp. 123-151). Guilford Press.

Fredrickson, B. (2001). The role of positive emotions in positive psychology. The broaden-and-build theory of positive emotions. The American Psychologist, 56(3), 218-226. https://doi.org/10.1037//0003-066X.56.3.218

Ghoushchi, S., Yazdani, H., Dowlatabadi, H. y Ahmadian, M. (2021). A multimodal discourse analysis of pictures in ELT textbooks: Modes of communication in focus. Jordan Journal of Modern Languages and Literatures, 13(4), 623-644. https://doi.org/10.47012/jjmll.13.4.2

Gigante, M. (2012). Accommodating scientific illiteracy: Award-winning visualizations on the covers of Science. Journal of Technical Writing and Communication, 42(1), 21-38. https://doi.org/10.2190/TW.42.1.c

Heim, M. (1998). Virtual realism. Oxford University Press.

Kaltenborn, B. y Bjerke, T. (2002). Association between environmental value orientations and landscape preferences. Landscape and Urban Planning, 59(1), 1-11. https://doi.org/10.1016/S0169-2046(01)00243-2

Kahn-Harris, K. (2018). Denialism: What drives people to reject the truth. The Guardian, 3 de agosto. https://www.theguardian.com/news/2018/aug/03/denialism-what-drives-people-to-reject-the-truth

Lane, R., Chua, P. y Dolan, R. (1999). Common effects of emotional valence, arousal and attention on neural activation during visual processing of pictures. Neuropsychologia, 37(9), 989-997. https://doi.org/10.1016/S0028-3932(99)00017-2

Lehman, B., Thompson, J., Davis, S. y Carlson, J. (2019). Affective images of climate change. Frontiers in Psychology, 10, 1-10. https://doi.org/10.3389/fpsyg.2019.00960

Leiserowitz, A. (2005). American risk perceptions: Is climate change dangerous? Risk Analysis: An International Journal, 25(6), 1433-1442. https://doi.org/10.1111/j.1540-6261.2005.00690.x

León, B., Negredo, S. y Erviti, M. C. (2022). Social engagement with climate change: Principles for effective visual representation on social media. Climate Policy, 1-17. https://doi.org/10.1080/14693062.2022.2077292

Le Meur, O., Le Callet, P., Barba, D. y Thoreau, D. (2006). A coherent computational approach to model the bottom-up visual attention. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(5), 802-817. https://doi.org/10.1109/TPAMI.2006.86

Lombard, M., Reich, R., Grabe, M., Bracken, C. y Ditton, T. (2000). Presence and television: The role of screen size. Human Communication Research, 26(1), 75-98. https://doi.org/10.1111/j.1468-2958.2000.tb00750.x

Luna, D., Bering, J. y Halberstadt, J. (2022). The value and distinctiveness of awe in science communication: Comparing the incidence and content of ‘awesome’ representations in science and non-science picture books. International Journal of Science Education, 12(2), 143-156. https://doi.org/10.1080/21548455.2022.2048119

Luo, Y. y Zhao, J. (2019). Motivated attention in climate change perception and action. Frontiers in Psychology, 10, 1-13. https://doi.org/10.3389/fpsyg.2019.01541

Manzo, K. (2010). Imaging vulnerability: The iconography of climate change. Area, 42(1), 96-107. https://doi.org/10.1111/j.1475-4762.2009.00887.x

Markowtiz, E., Slovic, P., Vastfjall, D. y Hodges, S. (2013). Compassion fade and the challenge of environmental conservation. Judgment and Decision Making, 8(4), 397-406. https://doi.org/10.1017/S193029750000526X

Mayer, J., Salovey, P. y Caruso, D. (2004). Emotional intelligence: Theory, findings, and implications. Psychological Inquiry, 15(3), 197-215. https://doi.org/10.1207/s15327965pli1503_02

Min, X., Zhai, G., Gu, K., Liu, J., Wang, S., Zhang, X. y Yang, X. (2017). Visual attention analysis and prediction on human faces. Information Sciences, 420, 417-430. https://doi.org/10.1016/j.ins.2017.08.040

Muñoz-Pico, H. P. y Viteri-Mancero, F. (2022). Del ver al compartir: el rol de las emociones en la propagación de contenidos sobre cambio climático en YouTube. Palabra Clave, 25(2), e2526. https://doi.org/10.5294/pacla.2022.25.2.6

Muñoz-Pico, H. P., León, B. y García-Martínez, A. N. (2021). Representación del cambio climático en YouTube: un análisis cuantitativo de los vídeos más populares. Palabra Clave, 24(1), e2415. https://doi.org/10.5294/pacla.2021.24.1.5

Nicholson-Cole, S. (2005). Representing climate change futures: A critique on the use of images for visual communication. Computers, Environment and Urban Systems, 29(3), 255-273. https://doi.org/10.1016/j.compenvurbsys.2004.05.002

Nudo, R. J. P. (2007). Postinfarct cortical plasticity and behavioral recovery. Stroke, 38, 840-845. https://doi.org/10.1161/01.STR.0000 247943.12887.d2

O’Neill, S. (2022). Defining a visual metonym: A hauntological study of polar bear imagery in climate communication. Transactions of the Institute of British Geographers, 47, 1104-1119. https://doi.org/10.1111/tran.12543

O’Neill, S. (2020). More than meets the eye: A longitudinal analysis of climate change imagery in the print media. Climatic Change 163, 9-26. https://doi.org/10.1007/s10584-019-02504-8

O’Neill, S. (2017). Engaging with climate change imagery. Oxford Research Encyclopedia of Climate Science. https://doi.org/10.1093/acrefore/9780190228620.013.371

O’Neill, S. y Hulme, M. (2009). An iconic approach for representing climate change. Global Environmental Change, 19(4), 402-410. https://doi.org/10.1016/j.gloenvcha.2009.07.004

Paré M. y Munoz, D. (2001). Expression of a recentering bias in saccade regulation by superior colliculus neurons. Experimental Brain Research, 137(3-4), 354-368. https://doi.org/10.1007/s002210000647

Pew Research Center (s.f.). Climate Change Concern Quiz. https://www.pewresearch.org/global/quiz/climate-change-concern-quiz/

Plutchik, R. (2001). The nature of emotions. American Scientist, 89(4), 344-350. https://doi.org/10.1511/2001.28.344

Powell, J. (2019). Scientists reach 100% consensus on anthropogenic global warming. Bulletin of Science, Technology & Society, 37(4), 183-184. https://doi.org/10.1177/0270467619886266

Rahmstorf, S. (2004). The climate sceptics weather catastrophes and climate change. Is there still hope for us. PG Verlag.

Ren, D., Wang, P., Qiao, H. y Zheng, S. (2013). A biologically inspired model of emotion eliciting from visual stimuli. Neurocomputing: An International Journal, 121, 328-336. https://doi.org/10.1177/0270467619886266

Richards, D. y Jacobson, E. (2022). How real is too real? User-testing the effects of realism as a risk communication strategy in sea level rise visualizations. Technical Communication Quarterly, 31(2), 190-206. https://doi.org/10.1080/10572252.2021.1986135

Ritter, M. (2020). Science says: How risky is that virus? Your mind may mislead. Associated Press, 5 de marzo. https://apnews.com/

Schneider, W. y Shiffrin, R. (1977). Controlled and automatic human information processing: I. detection, search, and attention. Psychological Review, 84(1), 1-66. https://doi.org/10.1037/0033-295X.84.1.1

Slovic, P. (2010a). The psychology of risk. Saúde E Sociedade, 19(4), 731-747. https://doi.org/10.1590/S0104-12902010000400002

Slovic, P. (2010b). Introduction and overview. En Slovic, P. (ed.), The feeling of risk: New perspectives on risk perception (pp. XIX-XXVII). Earthscan.

Sprague, T., Saproo, S. y Serences, J. (2015). Visual attention mitigates information loss in small- and large-scale neural codes. Trends in Cognitive Sciences, 19(4), 215-226. https://doi.org/10.1590/S0104-12902010000400002

Sutton, J. y Fischer, L. (2021). Understanding visual risk communication messages: An analysis of visual attention allocation and think-aloud responses to tornado graphics. Weather, Climate, and Society, 13(1), 173-188. https://doi.org/10.1175/WCAS-D-20-0042.1

Tatler, B. (2007). The central fixation bias in scene viewing: Selecting an optimal viewing position independently of motor biases and image feature distributions. Journal of Vision, 7(14), 1-17. https://doi.org/10.1167/7.14.4

Taub, E. y Uswatte, G. (2006). Constraint-induced movement therapy: Answers and questions after two decades of research. Neuro Rehabilitation, 21, 93-95. https://doi.org/10.3233/NRE-2006-21201

Watson, D., Clark, L. y Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: the PANAS scales. Journal of Personality and Social Psychology, 54(6), 1063-1070. https://doi.org/10.1037//0022-3514.54.6.1063

Wilson, B. (2008). Neuropsychological rehabilitation. Annual Review of Clinical Psychology, 4, 141-162. https://doi.org/10.1146/annurev.clinpsy.4.022007.141212

Published

2024-12-17

How to Cite

Muñoz-Pico, H. P., & León Anguiano, B. (2024). The Attentional Bias Toward Images of Climate Change and Its Impact on Citizen Commitment. Palabra Clave, 27(4), e2745. https://doi.org/10.5294/pacla.2024.27.4.5

Issue

Section

Articles