Sentimientos hacia la vacunación contra la covid-19: panorama colombiano en Twitter
DOI:
https://doi.org/10.5294/pacla.2022.25.1.4Palabras clave:
Análisis de sentimientos, covid-19, red social, Twitter, vacunasResumen
El propósito de este documento consiste en analizar los sentimientos subyacentes en publicaciones de Twitter sobre la vacunación contra la covid-19. Para cumplir el objetivo, se extraen, mediante minería de datos, 38.034 publicaciones de esta red social y se aplican técnicas de Machine Learning, en concreto, análisis de sentimientos y análisis de redes, para identificar los sentimientos que expresan los usuarios de esta red social hacia la vacunación por covid-19. También se identifican las cuentas más importantes de Twitter en temas de vacunación. Los resultados sugieren que, en su mayoría, los sentimientos hacia las vacunas son negativos. El miedo y la ira, respectivamente, son las emociones más recurrentes en las opiniones de Twitter. Por otra parte, se identifica que las cuentas más relevantes pertenecen a medios de comunicación, políticos e influenciadores, los cuales se clasifican de acuerdo con los principales sentimientos respecto de la vacuna. Destaca la oposición al gobierno, con sentimientos de ira, y a medios de comunicación reconocidos, con emociones asociadas a la alegría.
Descargas
Citas
Allahyari, M. et al. (2017). A brief survey of text mining: Classification, clustering and extraction techniques. ArXiv, 1, 1-13. http://arxiv.org/abs/1707.02919
Aps, L. et al. (2018). Eventos adversos de vacinas e as consequências da não vacinação: uma análise crítica. Revista de Saude Pública, 52, 40. https://doi.org/10.11606/S1518-8787.2018052000384
Arango Pastrana, C. A. y Osorio Andrade, C. F. (2021). Aislamiento social obligatorio: un análisis de sentimientos mediante machine learning. Suma de Negocios, 12(26), 1-13. https://doi.org/10.14349/sumneg/2021.v12.n26.a1
Ashton, J. (2021). Covid-19 and the anti-vaxxers. Journal of the Royal Society of Medicine, 114(1), 42-43. https://doi.org/10.1177/0141076820986065
Atalan, A. (2020). Is the lockdown important to prevent the Covid-9 pandemic? Effects on psychology, environment and economy-perspective. Annals of Medicine and Surgery, 56, 38-42. https://doi.org/10.1016/j.amsu.2020.06.010
Bastian, M., Heymann, S. y Jacomy, M. (2009). Gephi: An open source software for exploring and manipulating networks [Conference presentation]. Third International AAAI Conference on Weblogs and Social Media, 361-362. https://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
Carrasco, I. R. Z. y Lozano, J. C. (2018). Grupos antivacunas: el regreso global de las enfermedades prevenibles. Revista Latinoamericana de Infectología Pediátrica, 31(1), 17-21. https://www.medigraphic.com/pdfs/infectologia/lip-2018/lip181d.pdf
Carrieri, V., Madio, L. y Principe, F. (2019). Vaccine hesitancy and (fake) news: Quasi‐experimental evidence from Italy. Health Economics, 28(11), 1377-1382. https://doi.org/10.1002/hec.3937
CNN (2020). ¿En qué va la vacuna contra el coronavirus? 8 de junio. https://cnnespanol.cnn.com/2020/06/08/en-que-va-la-vacuna-contra-el-coronavirus/
Crokidakis, N. (2020). Covid-19 spreading in Rio de Janeiro, Brazil: do the policies of social isolation really work? MedRxiv, 136, 109930. https://doi.org/10.1016/j.chaos.2020.109930
Demidova, L. y Klyueva, I. (2017). Improving the classification quality of the SVM classifier for the imbalanced datasets on the base of ideas the SMOTE algorithm. ITM Web of Conferences, 10, 02002. https://doi.org/10.1051/itmconf/20171002002
Devijver, P. A. y Kittler, J. (1982). Pattern recognition: A statistical approach. Prentice Hall International.
Dubey, A. (2021). Public sentiment analysis of Covid-19 vaccination drive in India. Jaipuria Institute of Management. https://doi.org/10.2139/ssrn.3772401
El País (2020). ¿Qué dicen los datos de agosto sobre la nueva expansión del coronavirus en España? 23 de agosto. https://elpais.com/sociedad/2020-08-22/que-dicen-los-datos-de-agosto-sobre-la-nueva-expansion-del-coronavirus-en-espana.html
European Centre for Disease Prevention and Control (2020,). Systematic scoping review on social media monitoring methods and interventions relating to vaccine hesitancy. ECDC, 9 de marzo. https://www.ecdc.europa.eu/en/publications-data/systematic-scoping-review-social-media-monitoring-methods-and-interventions
Fernández, J. y Baquero, H. (2019). El movimiento anti-vacunas y la anti-ciencia como amenaza para la salud pública. Salud, 51(2), 104-107. https://doi.org/10.18273/revsal.v51n2-2019002
Hussein, E., Prerna Juneja, P. y Mitra, T. (2020). Measuring misinformation in video search platforms: An audit study on YouTube. [Conference] The 23rd ACM Conference on Computer-Supported Cooperative Work and Social Computing - CSCW ’20At: Minneapolis, MN, USA. https://doi.org/10.1145/3392854
Hotez, P. (2019). America and Europe’s new normal: the return of vaccine-preventable diseases. Pediatric Research, 85(7), 912-914. https://doi.org/10.1038/s41390-019-0354-3
Jamison, A. et al. (2020). Adapting and extending a typology to identify vaccine misinformation on Twitter. American Journal of Public Health, 110(S3), S331-S339. https://doi.org/10.2105/AJPH.2020.305940
Kearney, M. W. (2016). Package ‘rtweet’. https://cran.r-project.org/web/packages/rtweet/rtweet.pdf
Kotu, V. y Deshpande, B. (2014). Predictive analytics and data mining: concepts and practice with rapidminer. Morgan Kaufmann. https://doi.org/10.1016/B978-0-12-801460-8.00013-6
Kuckertz, A. et al. (2020). Startups in times of crisis – A rapid response to the Covid-19 pandemic. Journal of Business Venturing Insights, 13, e00169. https://doi.org/10.1016/j.jbvi.2020.e00169
Liu, B. (2010). Sentiment analysis and subjectivity. Handbook of Natural Language Processing, 2, 627-666.
Luhn, H. P. (1957). A statistical approach to mechanized encoding and searching of literary information. IBM Journal of Research and Development, 1(4), 309-317. https://doi.org/10.1147/rd.14.0309
Manning, C., Raghavan, P. y Schutze, H. (2008). Chapter 13: Text classification and naive bayes. Introduction to Information Retrieval, 234-265. https://doi.org/10.1017/CBO9780511809071.014
Mohammad, S. y Bravo, F. (2017). WASSA-2017 shared task on emotion intensity. 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis (pp. 34-49). Association for Computational Linguistics. https://doi.org/10.18653/v1/W17-5205
Montagni, I. et al. (2021). Acceptance of a Covid-19 vaccine is associated with ability to detect fake news and health literacy. Journal of Public Health, 43(4), 695-702. https://doi.org/10.1093/pubmed/fdab028
Mukherjee, K. (2020). Covid-19 and lockdown: Insights from Mumbai. Indian Journal of Public Health, 64, S168-S171. https://doi.org/10.4103/ijph.IJPH_508_20
Murphy, J. et al. (2021). Psychological characteristics associated with Covid-19 vaccine hesitancy and resistance in Ireland and the United Kingdom. Nature Communications, 12(1), 1-16. https://doi.org/10.1038/s41467-020-20226-9
Musinguzi, G. y Asamoah, B. O. (2020). The science of social distancing and total lock down: Does it work? Whom does it benefit? Electronic Journal of General Medicine, 17(6), 17-19. https://doi.org/10.29333/ejgm/7895
Neumann-Böhme, S. et al. (2020). Once we have it, will we use it? A European survey on willingness to be vaccinated against Covid-19. European Journal of Health Economics, 21(7), 977-982. https://doi.org/10.1007/s10198-020-01208-6
OMS (2020). Draft landscape of Covid-19 candidate vaccines. 20 April 2020. https://www.who.int/blueprint/priority-diseases/key-action/novel-coronavirus-landscape-ncov.pdf
Ortiz, E. (2020). Tres de cada cuatro mexicanos aceptarían aplicación de vacuna contra covid-19. UDG TV, 1 de septiembre. http://udgtv.com/noticias/tres-de-cada-cuatro-mexicanos-aceptarian-aplicacion-de-vacuna-contra-covid-19/
Pang, B. y Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval, 2(1-2), 1-135. https://doi.org/10.1561/1500000011
Paul, E., Steptoe, A. y Fancourt, D. (2021). Attitudes towards vaccines and intention to vaccinate against Covid-19: Implications for public health communications. The Lancet Regional Health-Europe, 1, 100012. https://doi.org/10.1016/j.lanepe.2020.100012
Pratama, B. T., Utami, E. y Sunyoto, A. (2019). The impact of using domain specific features on lexicon based sentiment analysis on Indonesian app review. [International Conference] Information and Communications Technology (Icoiact), 24-25 de julio. https://doi.org/10.1109/ICOIACT46704.2019.8938419
Piedrahíta-Valdés, H. et al. (2021). Vaccine hesitancy on social media: Sentiment analysis from June 2011 to April 2019. Vaccines, 9(1), 28. https://doi.org/10.3390/vaccines9010028
Salleras, L. (2018). Movimientos antivacunas: una llamada a la acción. Vacunas, 19(1), 1-3. https://doi.org/10.1016/j.vacun.2018.03.001v
Sobrino, J. C. S. (2018). Análisis de sentimientos en Twitter. Inteligencia artificial. Universidad Oberta de Catalunya.
Suárez, V. M. (2020). Vacuna frente a la covid-19: administración imperativa vs. información convincente. Pediatría Integral, 24(8), 431-434.
Sued, G. (2020). El algoritmo de YouTube y la desinformación sobre vacunas durante la pandemia de covid-19. Chasqui, 1(145), 163-180. https://doi.org/10.16921/chasqui.v1i145.4335
Teso, E., Olmedilla, M., Martínez-Torres, M. R. y Toral, S. L. (2018). Application of text mining techniques to the analysis of discourse in eWOM communications from a gender perspective. Technological Forecasting and Social Change, 129, 131-142. https://doi.org/10.1016/j.techfore.2017.12.018
The New York Times (2020a). Coronavirus vaccine tracker. https://www.nytimes.com/interactive/2020/science/coronavirus-vaccine-tracker.html
The New York Times (2020b). “Allá vamos otra vez”: España vive una segunda ola de coronavirus. 31 de agosto. https://www.nytimes.com/es/2020/08/31/espanol/mundo/rebrote-espana.html
Trogen, B., Oshinsky, D. y Caplan, A. (2020). Adverse consequences of rushing a Sars-CoV-2 vaccine: Implications for public trust. JAMA, 323(24), 2460-2461. https://doi.org/10.1001/jama.2020.8917
Wolfe, R. M. (2002). Anti-vaccinationists past and present. BMJ, 325(7361), 430-432. https://doi.org/10.1136/bmj.325.7361.430
Worldometer. (2020). Countries where Covid-19 has spread. https://www.worldometers.info/coronavirus/countries-where-coronavirus-has-spread/
Zucker, J. R. et al. (2020). Consequences of undervaccination—measles outbreak, New York City, 2018-2019. New England Journal of Medicine, 382(11), 1009-1017. https://doi.org/10.1056/NEJMoa1912514
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Palabra Clave
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Esta revista y sus artículos se publican bajo la licencia CreativeCommons CC BY 4.0 DEED Atribución 4.0 Internacional, usted es libre de: Compartir — copiar y redistribuir el material en cualquier medio o formato para cualquier propósito, incluso comercialmente. Adaptar — remezclar, transformar y construir a partir del material para cualquier propósito, incluso comercialmente. La licencia no puede revocar estas libertades en tanto usted siga los términos de la licencia.